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Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low
speed level flight conditions. Neural network connections between the wind tunnel test data and the three flight test pilot
vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are
used. The first database is the NASA/Army UH-60A Airloads Program flight test database. The second database is the
UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames 80- by 120-Foot Wind Tunnel with the
Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel
rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system
hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind
tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The
present neural network connections can significantly increase the value of wind tunnel testing.

Nomenclature

CT rotor thrust coefficient
CW helicopter gross weight coefficient
LRTA large rotor test apparatus
MISO multiple-input, single-output
N number of main rotor blades,N= 4 for the UH-60A
N/rev integer (N) multiple of main rotor speed
NP synonymous toN/rev
PLATV peak,N/rev pilot floor lateral vibration,g’s
PLONGV peak,N/rev pilot floor longitudinal vibration,g’s
PVV peak,N/rev pilot floor vertical vibration,g’s
R linear regression correlation
RMS error root mean square error,g’s
αs rotor shaft angle measured from vertical, positive aft, deg
σ rotor solidity

Introduction

At present, helicopter vibration levels cannot be predicted with con-
fidence. The relationships between the helicopter rotor hub accelerations
and the corresponding fuselage vibration may be linear or nonlinear, and
involve many variables. Here, fuselage vibration is defined as theN/rev
fuselage acceleration at the pilot floor location. Using only flight test
data, neural networks were used to connect the flight test rotating system
hub accelerations to the flight test pilot vibration (Refs. 1, 2). The current
study uses neural networks to connect ground based wind tunnel data to
the flight test pilot vibration in low speed level flight. Neural network
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relationships between the wind tunnel data and the three flight test pilot
floor vibration components (vertical, lateral, and longitudinal) are stud-
ied. A recent initial study (Ref. 3) had considered only the pilot floor
vertical vibration component.

This neural network study introduces the use of ground-based wind
tunnel test data to model the pilot floor vibration in flight. Two full-
scale UH-60A Black Hawk databases are used. The first database is the
NASA/Army UH-60A Airloads Program flight test database (Ref. 4).
The second database is the low speed full-scale UH-60A rotor-only wind
tunnel database (Refs. 5–7) that was acquired in the NASA Ames 80-
by 120-Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA).
The successful establishment of such neural network based connections
(relationships) between the wind tunnel parameters and the flight test
data can increase the value of wind tunnel testing. This is because wind
tunnel testing is less expensive than flight testing and a range of steady
flight conditions can be easily explored. In the present study, the measured
wind tunnel parameters under consideration include both rotating system
parameters (hub accelerations) and fixed system parameters (hub loads
from the dynamic rotor balance system).

Using neural networks and flight test data, it was shown earlier
(Refs. 1,2) that the flight test hub accelerations plus the advance ratio
and gross weight could be used to model the flight test pilot floor vibra-
tion. It was shown in Ref. 3 that the wind tunnel and flight test data of
interest have similar trends (Fig. 1 of Ref. 3). Based on the above noted
similarity, the present neural network study proceeds to establish the
connections between the wind tunnel hub accelerations and the flight test
pilot floor vibration in low speed level flight. Subsequently, this study
also considers additional wind tunnel data such as the fixed system rotor-
generated balance-system loads.

The focus of future work is to extend the present study to predict the
flight test pilot vibration with active controls using the available wind
tunnel data.
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Fig. 1. UH-60A peak,N/rev pilot floor vertical vibration, PVV, vari-
ation with advance ratio.

Objectives

The general objective of this study is to evaluate the potential of using
wind tunnel measurements to represent flight vehicle vibrations using
neural networks. The present study has the following four specific ob-
jectives: 1) Using the flight test advance ratio and gross weight, obtain
low speed, neural network based models of the PVV, the PLATV, and
the PLONGV; 2) Using the measured wind tunnel rotating system hub
accelerations and operating parameters, determine whether reasonably
accurate neural network based models of the flight test PVV, PLATV,
and PLONGV can be obtained; 3) Using the measured six components
of the wind tunnel fixed systemN/rev (NP) balance hub loads and the
operating parameters, determine whether reasonably accurate neural net-
work models of the PVV, the PLATV, and the PLONGV can be obtained;
4) Assess the results to determine whether a particular approach is
markedly better than the others to predict the flight test measure-
ments or whether alternative wind tunnel test measurements would be
required.

Flight Test and Wind Tunnel Databases

The source of the flight test data was the NASA/Army UH-60A Air-
loads Program flight test database (Ref. 4). The flight test data were
obtained with the bifilar vibration absorbers installed on the UH-60A.
The creation of the pilot floor vibration components (PVV, PLATV, and
PLONGV) database has been described separately (Refs. 1 and 2). The
present study considers the flight test rotating system hub accelerom-
eters. Specifically, the (N− 1)P and the (N+ 1)P tangential (in-plane)
hub accelerations and theNP vertical hub acceleration are considered.
The number of flight test data points that are of present interest is 47 (low
speed level flight conditions).

The low speed full-scale UH-60A wind tunnel database (Refs. 5–7)
that was acquired in the NASA Ames 80- by 120-Foot Wind Tunnel with
the Large Rotor Test Apparatus (LRTA) is used. The bifilar vibration
absorbers were not installed during this test. The present study considers
the (N− 1)P and the (N+ 1)P tangential (in-plane) hub accelerations
and theNP vertical hub acceleration. Also, the six components of the
N/rev hub loads from the LRTA dynamic rotor balance-system are con-
sidered (normal force, axial force, side force, pitching moment, rolling
moment, and yawing moment). Sixty-two wind tunnel data points were
used in this study. These wind tunnel data points include variations in
advance ratio, thrust coefficient, and shaft angle (the variations in the

shaft angle allow for simulation of flight conditions that include level
flight, climb and descent conditions).

Procedurally, the wind tunnel and the flight test operating conditions
are matched in a simple manner. The wind tunnel and flight test ad-
vance ratios are matched, and the flight testCW/σ and the wind tunnel
(CT cosαs)/σ are matched. The above approach of relating the wind
tunnel variables to the flight test variables is believed to be an adequate
approach for this initial study that includes all three pilot floor vibration
components.

Basic Variations

Figures 1–3 show the low-speed level-flight variations of the flight
test pilot vibration with advance ratio. In addition to the variation in the
advance ratio covered in these figures, these data involve variations in
CW/σ .

The measured, subject wind tunnel data were shown in Ref. 3
(Figs. 2–5 of Ref. 3) and are not included here. The wind tunnel measure-
ments include the rotating system hub accelerations and the fixed system
hub loads. The wind tunnel database contains 62 points. In addition to the
variation in the advance ratio, the wind tunnel data involve variations in
CT andαs. As a result, many of the wind tunnel operating conditions do

Fig. 2. UH-60A peak, N/rev pilot floor lateral vibration, PLATV,
variation with advance ratio.

Fig. 3. UH-60A peak, N/rev pilot floor longitudinal vibration,
PLONGV, variation with advance ratio.
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not simulate level flight. The measured wind tunnel data were previously
validated in Ref. 3, i.e., an assessment of the quality of the wind tunnel
was performed and the data were found to be of good quality.

In this paper, the rotating system (N− 1)P and (N+ 1)P tangential
(in-plane) hub accelerations and theNP vertical hub acceleration are
referred to as the “three relevant” hub acceleration components. Also,
the wind tunnel advance ratio and (CT cosαs)/σ are referred to as the
wind tunnel operating condition parameters (the “operating parameters”).
This neural network based modeling study considers low speed level
flight conditions and does not include the hover condition.

Neural Network Approach

The overall neural network modeling approach is given in Ref. 1.
To accurately capture the required functional dependencies, the neural
network inputs must be carefully selected and account for all important
physical traits that are specific to the application. The back-propagation
type of network with one hidden layer, a hyperbolic tangent as the ba-
sis function, and the extended-delta-bar-delta (EDBD) algorithm as the
learning rule (Ref. 8) is used in this study. The required number of neural
network processing elements (PEs) depends on the specific application.
The determination of the appropriate number of PEs is done by starting
with a minimum number of PEs. Additional PEs are added to improve
neural network performance by reducing the RMS error between the test
data and the neural network predictions.

For the notation used in this paper, a neural network architecture such
as “2-3-1” refers to a neural network with two inputs, three processing
elements in the single hidden layer, and one output. This application of
neural networks has been conducted using the neural networks package
NeuralWorks Pro II/PLUS (version 5.51) by NeuralWare (Ref. 8).

Results

This neural network study separately considers the three components
of the N/rev pilot floor vibration, namely, the vertical component, PVV,
and the two in-plane components, PLATV and PLONGV. In the present
study, the flight test pilot floor vibration is predicted using neural networks
and measured ground based wind tunnel data. The measured wind tunnel
data include the three relevant rotating system hub accelerations and
separately, the fixed systemN/rev balance-system hub loads. In this study,
the neural network training results (the correlation results) are presented
along with the following two parameters: the linear regression correlation
R, where anR close to 1 indicates that a regression-based relationship
exists between the test data and the neural network predictions, and the
RMS error.

Since the actual flight test PVV, PLATV, and PLONGV values are
originally from the 47-point flight test database, for present purposes,
the appropriate values of the PVV, PLATV, and PLONGV have to be
obtained at the 62 point wind tunnel operating condition values. The
pilot floor vibration components at the wind tunnel operating conditions
are referred to as the “flight test PVV,” the “flight test PLATV,” and the
“flight test PLONGV.” These flight test values are obtained as described
in the following section.

Pilot vibration from flight test advance ratio and gross weight

Three different MISO 2-3-1 back-propagation neural networks are
trained from the three 47-point flight test databases (one for each of the
three vibration components). The two inputs are as follows: the flight
test advance ratio andCW/σ . The single output is the actual, respec-
tive pilot floor vibration value (PVV or PLATV or PLONGV). For PVV,
the above back-propagation network has been trained for 300,000 itera-
tions with resultingR= 0.754 and RMS error= 0.019 g’s. For PLATV,

the above back-propagation network has been trained for 10,000 itera-
tions with resultingR= 0.626 and RMS error= 0.024 g’s. For PLONGV,
the above back-propagation network has been trained for 200,000 itera-
tions with resultingR= 0.860 and RMS error= 0.019 g’s. Figures 4–6
show the resulting correlation plots for the PVV, PLATV, and PLONGV,
respectively. Figures 4–6 show that, for purposes of this initial study,
the advance ratio and the gross weight can reasonably predict the low
speed pilot floor vibration. Representative parametric variations of the
pilot floor vibration components have been obtained by executing the
above three trained back-propagation networks with varying inputs (ad-
vance ratio and weight coefficient/solidity ratio). The resulting neural net-
work predictions display consistent trends and are shown in Figs. 7–9.
Figures 7–9 show the low speed, neural network predicted parametric
variations of the PVV (Fig. 7), the PLATV (Fig. 8), and the PLONGV
(Fig. 9) versus the advance ratio for a weight coefficient/solidity ratio
range 0.07 to 0.13 and an advance ratio range 0.09 to 0.19.

Figures 10–12 show the flight test PVV (Fig. 10), PLATV (Fig. 11),
and PLONGV (Fig. 12) variations with the advance ratio where the re-
spective neural network has been executed using the wind tunnel operat-
ing parameters as the inputs (62 points).

The following sections describe three different methods of predicting
the pilot floor vibration. The first method uses the flight test rotating
system hub accelerations. The second method uses the measured wind
tunnel rotating system hub accelerations, and the third method uses the
measured wind tunnel fixed systemN/rev balance-system hub loads.
In this paper, representative, predicted pilot floor vibration variations
with advance ratio forCW/σ (or equivalently, (CT cosαs)/σ )= 0.08 are
presented.

Fig. 4. PVV correlation using advance ratio and gross weight.

Fig. 5. PLATV correlation using advance ratio and gross weight.
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Fig. 6. PLONGV correlation using advance ratio and gross weight.

Fig. 7. Predicted PVV trends using advance ratio and gross weight.

Fig. 8. Predicted PLATV trends using advance ratio and gross weight.

Pilot vibration prediction using flight test rotating
system hub accelerations

Three different MISO 5-6-1 back-propagation neural networks are
used (one for each of the three vibration components). The five flight
test inputs are as follows: the three relevant actual flight test rotat-
ing system hub accelerations, the advance ratio, andCW/σ . The sin-
gle output is the actual, respective pilot floor vibration value (PVV or
PLATV or PLONGV). For PVV, the above back-propagation network

Fig. 9. Predicted PLONGV trends using advance ratio and gross
weight.

Fig. 10. Predicted flight test PVV using advance ratio and gross
weight, evaluated at 62 wind tunnel data points, includes thrust
variations.

Fig. 11. Predicted flight test PLATV using advance ratio and gross
weight, evaluated at 62 wind tunnel data points, includes thrust
variations.
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Fig. 12. Predicted flight test PLONGV using advance ratio and gross
weight, evaluated at 62 wind tunnel data points, includes thrust
variations.

Fig. 13. PVV prediction using flight test rotating system hub accel-
erations and operating parameters (CW/σ = 0.08).

has been trained for 3 million iterations with resultingR= 0.991 and
RMS error= 0.004 g’s. For PLATV, the above back-propagation net-
work has been trained for 3 million iterations with resultingR= 0.979
and RMS error= 0.006 g’s. For PLONGV, the above back-propagation
network has been trained for 820,000 iterations with resultingR= 0.994
and RMS error= 0.004 g’s. The three predictions for the three pilot floor
vibration components are presented as follows.

PVV from flight test hub accelerations.Figure 13 shows the representa-
tive, predicted PVV using the flight test hub accelerations and the flight
test PVV derived from Fig. 10 (from the neural network used to obtain
Fig. 10). In Fig. 13, the two PVV variations with advance ratio (at con-
stant thrust) show similar trends, namely, showing first an increase in the
pilot floor vertical vibration with advance ratio and subsequently showing
a decrease in the pilot floor vertical vibration with advance ratio.

PLATV from flight test hub accelerations.Figure 14 shows the represen-
tative, predicted PLATV using the flight test hub accelerations and the
flight test PLATV derived from Fig. 11 (from the neural network used to
obtain Fig. 11). In Fig. 14, the two PLATV variations with advance ratio
(at constant thrust) show similar trends, namely, a decrease in the pilot
floor lateral vibration with advance ratio.

Fig. 14. PLATV prediction using flight test rotating system hub
accelerations and operating parameters (CW/σ = 0.08).

Fig. 15. PLONGV prediction using flight test rotating system hub
accelerations and operating parameters (CW/σ = 0.08).

PLONGV from flight test hub accelerations.Figure 15 shows the repre-
sentative, predicted PLONGV using the flight test hub accelerations and
the flight test PLONGV derived from Fig. 12 (from the neural network
used to obtain Fig. 12). In Fig. 15, the two PLONGV variations with
advance ratio (at constant thrust) show similar trends, namely, a decrease
in the pilot floor longitudinal vibration with advance ratio.

Pilot vibration prediction using wind tunnel
rotating system hub accelerations

Three different MISO 5-2-1 back-propagation neural networks are
used (one for each of the three vibration components). The five wind tun-
nel inputs are as follows: the three relevant wind tunnel hub accelerations,
the advance ratio, and (CT cosαs)/σ . The single output is the respec-
tive pilot floor vibration flight test value (flight test PVV or flight test
PLATV or flight test PLONGV). For PVV, the above back-propagation
network has been trained for 56,000 iterations with resultingR= 0.997
and RMS error= 0.002 g’s. For PLATV, the above back-propagation net-
work has been trained for 13,500 iterations with resultingR= 0.995 and
RMS error= 0.001 g’s. For PLONGV, the above back-propagation net-
work has been trained for 45,000 iterations with resultingR= 0.995 and
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RMS error= 0.003 g’s. The three predictions for the three pilot floor
vibration components are presented as follows.

PVV from wind tunnel hub accelerations.Figure 16 shows the represen-
tative, predicted PVV with advance ratio and the flight test PVV derived
from Fig. 10. Figure 16 shows that the three relevant measured wind
tunnel hub accelerations and the operating parameters can characterize
and quantify the low speed level flight PVV.

PLATV from wind tunnel hub accelerations.Figure 17 shows the repre-
sentative, predicted PLATV with advance ratio and the flight test PLATV
derived from Fig. 11. Figure 17 shows that the three relevant measured
wind tunnel hub accelerations and the operating parameters can charac-
terize and quantify the low speed level flight PLATV.

PLONGV from wind tunnel hub accelerations.Figure 18 shows the rep-
resentative, predicted PLONGV with advance ratio and the flight test
PLONGV derived from Fig. 12. Figure 18 shows that the three relevant
measured wind tunnel hub accelerations and the operating parameters
can characterize and quantify the low speed level flight PLONGV.

Fig. 16. PVV prediction using wind tunnel rotating system hub ac-
celerations and operating parameters (CW/σ = 0.08).

Fig. 17. PLATV prediction using wind tunnel rotating system hub
accelerations and operating parameters (CW/σ = 0.08).

Fig. 18. PLONGV prediction using wind tunnel rotating system hub
accelerations and operating parameters (CW/σ = 0.08).

Pilot vibration prediction using wind tunnel
balance-system hub loads

Three different MISO 8-2-1 back-propagation neural networks are
used (one for each of the three vibration components). The eight wind
tunnel inputs are as follows: the six measured wind tunnel fixed system
N/rev balance-system hub loads, the advance ratio, and (CT cosαs)/σ
(the latter two inputs are the same as the operating parameters). The sin-
gle output is the respective pilot floor vibration flight test value (flight test
PVV or flight test PLATV or flight test PLONGV). For PVV, the above
back-propagation network has been trained for 13,400 iterations with
resultingR= 0.997 and RMS error= 0.002 g’s. For PLATV, the above
back-propagation network has been trained for 3220 iterations with
resultingR= 0.995 and RMS error= 0.001 g’s. For PLONGV, the above
back-propagation network has been trained for 5750 iterations with
resulting R= 0.996 and RMS error= 0.002 g’s. The three predictions
for the three pilot floor vibration components are presented as follows.

PVV from wind tunnel balance loads.Figure 19 shows the representative,
predicted PVV with advance ratio and the flight test PVV derived from
Fig. 10. Figure 19 shows that the six components of the measured wind
tunnelN/rev balance-system hub loads and the operating parameters can
represent the low speed level flight PVV.

PLATV from wind tunnel balance loads.Figure 20 shows the represen-
tative, predicted PLATV with advance ratio and the flight test PLATV
derived from Fig. 11. Figure 20 shows that the six components of the
measured wind tunnelN/rev balance-system hub loads and the operating
parameters can represent the low speed level flight PLATV.

PLONGV from wind tunnel balance loads.Figure 21 shows the represen-
tative, predicted PLONGV with advance ratio and the flight test PLONGV
derived from Fig. 12. Figure 21 shows that the six components of the
measured wind tunnelN/rev balance-system hub loads and the operating
parameters can represent the low speed level flight PLONGV.

Concluding Remarks

Using only flight test data, it was shown earlier (Refs. 1 and 2) that
neural networks can be used to connect the flight test rotating system hub
accelerations to the flight test pilot floor vibration. The present neural
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Fig. 19. PVV prediction using six components ofN/rev balance-
system hub loads and operating parameters (CW/σ = 0.08).

Fig. 20. PLATV prediction using six components ofN/rev balance-
system hub loads and operating parameters (CW/σ = 0.08).

Fig. 21. PLONGV prediction using six components ofN/rev balance-
system hub loads and operating parameters (CW/σ = 0.08).

network representation study introduces the use of full-scale wind tunnel
test data to model the flight test pilot floor vibration. This study considers
the three peak,N/rev components of the flight test pilot floor vibration in
low speed level flight. Specific conclusions from this study are as follows:

1) The wind tunnel rotating hub accelerations and operating parame-
ters can be used to represent the low speed pilot floor vibration.

2) The wind tunnel fixed-systemN/rev hub loads and the operat-
ing parameters can also be used to represent the low speed pilot floor
vibration.

3) Based on the above conclusions, it appears that the wind tunnel
rotating system hub accelerations can have a significant role since they
can be used to represent the pilot floor vibration. To model the pilot floor
vibration, compared to the use of the fixed system balance-system hub
loads, the successful use of the rotating system hub accelerometers may
entail less effort. This would be because the use of a fixed system balance-
system would involve the associated calibration of the balance (which in
the present case was calibrated using a static procedure). However, at the
same time, good results have been presently obtained using the hub loads
without the dynamic calibration of the balance, i.e., goodR’s have been
obtained with only static calibration of the balance.

In general, the successful establishment of neural network based con-
nections between the wind tunnel parameters and the flight test data (such
as the connections that have been initiated in the present study) can sig-
nificantly increase the value of wind tunnel testing.
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Montréal, Canada, June 11–13, 2002.

6Jacklin, S. A., Haber, A., de Simone, G., Norman, T. R., Kitaplioglu,
C., and Shinoda, P. M., “Full-Scale Wind Tunnel Test of an Individual
Blade Control System for a UH-60 Helicopter,” American Helicopter
Society 58th Annual Forum Proceedings, Montr´eal, Canada, June
11–13, 2002.

7Shinoda, P., Yeo, H., and Norman, T. R., “Rotor Performance of a
UH-60 Rotor System in the NASA Ames 80- by 120-Foot Wind Tunnel,”
Journal of the American Helicopter Society, Vol. 49, (4), October 2004,
pp. 401–413.

8NeuralWorks Professional II/PLUS Manuals: (a) Reference Guide,
(b) Neural Computing, (c) Using NeuralWorks, NeuralWare, Inc.,
Pittsburgh, PA, 1995.


